Fuzzy Empirical Copula for Estimating Data Dependence Structure

نویسندگان

  • Zhaojie Ju
  • Youlun Xiong
  • Honghai Liu
چکیده

Empirical copula is a non-parametric algorithm to estimate the dependence structure of highdimensional arbitrarily distributed data. The computation of empirical copula is, however, very costly so that it cannot be implemented into applications at a real-time context. In this paper, fuzzy empirical copula is proposed to reduce the computation time of dependence structure estimation. First, a brief introduction of empirical copula is provided. Next, a new version of Fuzzy Clustering by Local Approximation of Memberships (FLAME) is proposed to integrate into empirical copula. The FLAME+ algorithm is utilised to identify the highest density objects, which are used to represent the original dataset, and then empirical copula is applied to estimate its dependence structure. Finally, two case studies have been carried out to demonstrate the effectiveness and efficiency of the fuzzy empirical copula.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GJR-Copula-CVaR Model for Portfolio Optimization: Evidence for Emerging Stock Markets

Abstract T his paper empirically examines the impact of dependence structure between the assets on the portfolio optimization, composed of Tehran Stock Exchange Price Index and Borsa Istanbul 100 Index. In this regard, the method of the Copula family functions is proposed as powerful and flexible tool to determine the structure of dependence. Finally, the impact of the dep...

متن کامل

Risk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models

H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...

متن کامل

Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance

The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...

متن کامل

Electricity Market Risk Measurement using Vine-Copula based Monte Carlo Simulation Model

In this paper we propose a vine copula based Monte Carlo simulation model for estimating Portfolio Value at Risk. The vine copula model is introduced to analyze the complex dependence structure of different regional markets in the typical financial markets. Then we construct the vine copula based Portfolio Value at Risk model, taking into account the identified high dimensional dependence struc...

متن کامل

Dependence Tree Structure Estimation via Copula

We propose an approach for dependence tree structure learning via copula. A nonparametric algorithm for copula estimation is presented. Then a Chow-Liu like method based on dependence measure via copula is proposed to estimate maximum spanning bivariate copula associated with bivariate dependence relations. The main advantage of the approach is that learning with empirical copula focuses on dep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013